
Differential Geometry and its Applications 47 (2016) 14–25
Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Real hypersurfaces in complex hyperbolic two-plane 

Grassmannians with Reeb invariant Ricci tensor ✩

Gyu Jong Kim, Young Jin Suh ∗

Kyungpook National University, Department of Mathematics, Taegu 702-701, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 June 2015
Available online xxxx
Communicated by V. Cortes

MSC:
primary 53C40
secondary 53C15

Keywords:
Real hypersurfaces
Complex hyperbolic two-plane 
Grassmannians
Commuting Ricci tensor
Reeb invariant
Ricci tensor
Hopf hypersurface

In this paper we first introduce the full expression of the curvature tensor of a real 
hypersurface M in complex hyperbolic two-plane Grassmannians SU 2,m/S(U2·Um), 
m≥2 from the equation of Gauss. Next we derive a new formula for the Ricci 
tensor S of M in SU2,m/S(U2·Um). Finally we give a complete classification of Hopf 
hypersurfaces in complex hyperbolic two-plane Grassmannians SU 2,m/S(U2·Um)
with Reeb invariant Ricci tensor, that is, LξS = 0. Each can be described as a tube 
over a totally geodesic SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um) or a horosphere 
whose center at infinity is singular.
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1. Introduction

In the geometry of real hypersurfaces in complex space forms Mm(c) or in quaternionic space forms 
Qm(c) Kimura [7,8] (resp. Pérez and Suh [10]) considered real hypersurfaces in Mn(c) (resp. in Qm(c)) with 
commuting Ricci tensor, that is, Sφ = φS, (resp. Sφi = φiS, i = 1, 2, 3) where S and φ (resp. S and φi, 
i = 1, 2, 3) denote the Ricci tensor and the structure tensor of real hypersurfaces in Mm(c) (resp. in Qm(c)).

In [7,8], Kimura has classified that a Hopf hypersurface M in complex projective space Pm(C) with 
commuting Ricci tensor is locally congruent to of type (A), a tube over a totally geodesic Pk(C), of type 
(B), a tube over a complex quadric Qm−1, cot2 2r = m − 2, of type (C), a tube over P1(C)×P(m−1)/2(C), 
cot2 2r = 1

m−2 and n is odd, of type (D), a tube over a complex two-plane Grassmannian G2(C5), cot2 2r = 3
5

and n = 9, of type (E), a tube over a Hermitian symmetric space SO(10)/U(5), cot2 2r = 5
9 and m = 15.
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On the other hand, in a quaternionic projective space QPm Pérez and Suh [10] have classified real 
hypersurfaces in QPm with commuting Ricci tensor Sφi = φiS, i = 1, 2, 3, where S (resp. φi) denotes the 
Ricci tensor (resp. the structure tensor) of M in QPm, is locally congruent to of A1, A2-type, that is, a tube 
over QP k with radius 0 < r < π

2 , k∈{0, · · ·, m −1}. The almost contact structure vector fields {ξ1, ξ2, ξ3} are 
defined by ξi = −JiN , i = 1, 2, 3, where Ji, i = 1, 2, 3, denote a quaternionic Kähler structure of QPm and 
N a unit normal field of M in QPm. Moreover, Pérez and Suh [9] have considered the notion of ∇ξiR = 0, 
i = 1, 2, 3, where R denotes the curvature tensor of a real hypersurface M in QPm, and proved that M is 
locally congruent to a tube of radius π4 over QP k.

Let us denote by SU 2,m the set of (m +2)×(m +2)-indefinite special unitary matrices and Um the set of 
m×m-unitary matrices. Then the Riemannian symmetric space SU 2,m/S(U2Um), m ≥ 2, which consists of 
complex two-dimensional subspaces in indefinite complex Euclidean space Cm+2

2 , has a remarkable feature 
that it is a Hermitian symmetric space as well as a quaternionic Kähler symmetric space. In fact, among 
all Riemannian symmetric spaces of noncompact type the symmetric spaces SU 2,m/S(U2Um), m ≥ 2, are 
the only ones which are Hermitian symmetric and quaternionic Kähler symmetric.

The existence of these two structures leads to a number of interesting geometric problems on 
SU 2,m/S(U2Um), one of which we are going to study in this article. To describe this problem, we de-
note by J the Kähler structure and by J the quaternionic Kähler structure a quaternionic Kähler structure 
J not containing J on SU 2,m/S(U2Um) defined by J = Span{J1, J2, J3}. Let M be a connected hypersur-
face in SU 2,m/S(U2Um) and denote by N a unit normal to M . Then a structure vector field ξ defined by 
ξ = −JN is said to be a Reeb vector field.

Next, we consider the standard embedding of SU2,m−1 in SU 2,m. Then the orbit SU 2,m−1 ·o of SU 2,m−1

through o is the Riemannian symmetric space SU 2,m−1/S(U2Um−1) embedded in SU 2,m/S(U2Um) as a 
totally geodesic submanifold. Every tube around SU 2,m−1/S(U2Um−1) in SU 2,m/S(U2Um) has the property 
that both maximal complex subbundle C and quaternionic subbundle Q are invariant under the shape 
operator.

Finally, let m be even, say m = 2n, and consider the standard embedding of Sp1,n in SU 2,2n. Then the 
orbit Sp1,n · o of Sp1,n through o is the quaternionic hyperbolic space HHn embedded in SU 2,2n/S(U2U2n)
as a totally geodesic submanifold. Any tube around HHn in SU 2,2n/S(U2U2n) has the property that both 
C and Q are invariant under the shape operator.

As a converse of the statements mentioned above, we assert that with one possible exceptional case there 
are no other such real hypersurfaces. Related to such a result and the work in Eberlein [4], we introduce 
another theorem due to Berndt and Suh [3] as follows:

Theorem A. Let M be a connected hypersurface in SU 2,m/S(U2Um), m ≥ 2. Then the maximal complex 
subbundle C of TM and the maximal quaternionic subbundle Q of TM are both invariant under the shape 
operator of M if and only if M is congruent to an open part of one of the following hypersurfaces:

(A) a tube around a totally geodesic SU 2,m−1/S(U2Um−1) in SU 2,m/S(U2Um);
(B) a tube around a totally geodesic HHn in SU 2,2n/S(U2U2n), m = 2n;
(C) a horosphere in SU 2,m/S(U2Um) whose center at infinity is singular;

or the following exceptional case holds:

(D) The normal bundle νM of M consists of singular tangent vectors of type JX ⊥ JX. Moreover, M has 
at least four distinct principal curvatures, three of which are given by

α =
√

2 , γ = 0 , λ = 1√

2
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with corresponding principal curvature spaces

Tα = TM � (C ∩ Q) , Tγ = J(TM �Q) , Tλ ⊂ C ∩ Q ∩ JQ.

If μ is another (possibly nonconstant) principal curvature function, then we have Tμ ⊂ C ∩ Q ∩ JQ, 
JTμ ⊂ Tλ and JTμ ⊂ Tλ.

In Theorem A the maximal complex subbundle C of TM is invariant under the shape operator if and only 
if the Reeb vector field ξ becomes a principal vector field for the shape operator A of M in SU 2,m/S(U2Um). 
In this case the Reeb vector field ξ is said to be a Hopf vector field. The flow generated by the integral 
curves of the structure vector field ξ for Hopf hypersurfaces in G2(Cm+2) is said to be a geodesic Reeb flow.

In the proof of Theorem A we proved that the 1-dimensional distribution [ξ] is contained in either the 
3-dimensional distribution Q⊥ or in the orthogonal complement Q such that TxM = Q⊕Q⊥. The case 
(A) in Theorem A is just the case that the 1-dimensional distribution [ξ] belongs to the distribution Q. 
Of course, it is not difficult to check that the Ricci tensor S of type (A) or of type (C) with JX∈JX in 
Theorem A commutes with the structure tensor, that is Sφ = φS. Then it must be a natural question to 
ask whether real hypersurfaces in SU 2,m/S(U2·Um) with commuting Ricci tensor can exist or not.

On the other hand, in due to [19] Suh has considered such a converse problem and has given a complete 
classification of real hypersurfaces in SU 2,m/S(U2·Um) satisfying Sφ = φS as follows:

Theorem B. Let M be a Hopf hypersurface in SU 2,m/S(U2·Um) with commuting Ricci tensor, m≥3. Then 
M is locally congruent to an open part of a tube around some totally geodesic SU 2,m−1/S(U2·Um−1) in 
SU 2,m/S(U2·Um) or a horosphere whose center at infinity with JX∈JX is singular.

In a compact complex two-plane Grassmannian G2(Cm+2) we have considered the notion of Ricci com-
muting [12], Sφ = φS, and give a characterization of type (A), which is a tube over a totally geodesic 
G2(Cm+1) in G2(Cm+2) and have proved a nonexistence property for real hypersurfaces in G2(Cm+2)
with parallel Ricci tensor in [14]. Then, naturally, we can consider more general notions like Reeb invari-
ant, semi-parallel, harmonic curvature, and Reeb parallel which are given by LξS = 0, R(X, Y )S = 0, 
(∇XS)Y = (∇Y S)X, ∇ξS = 0, for any vector fields X and Y and the Reeb vector field ξ on real hypersur-
faces M in G2(Cm+2) respectively, where R(X, Y ) and S denote the curvature tensor and the Ricci tensor 
of M in G2(Cm+2) (see [13,15,16]). These conditions are weaker than usual notion of parallel Ricci tensor.

Motivated by such notions for M in G2(Cm+2), recently, Suh and Woo [20] have considered the notion 
of Ricci parallel, that is, ∇S = 0 in complex hyperbolic two-plane Grassmannians SU 2,m/S(U2·Um), m≥3, 
and proved that there do not exist any hypersurfaces in SU 2,m/S(U2·Um) with parallel Ricci tensor.

As mentioned in Theorem B, when a real hypersurface M in SU 2,m/S(U2·Um) is locally congruent to an 
open part of a tube over a totally geodesic SU 2,m−1/S(U2·Um−1) in SU 2,m/S(U2·Um) or a horosphere, the 
Reeb vector field becomes ξ = ξ1, and it becomes LξA = 0 (see [21]). From this, together with the other 
formula Lξφ = 0, Lξφ1 = 0, and

(Lξη2)⊗ξ2 + η2⊗Lξξ2 + (Lξη3)⊗ξ3 + η3⊗Lξξ3 = 0.

Then it can be easily checked that they satisfy LξS = 0. In this case, we say that M has a Reeb invariant 
Ricci tensor.

From such a point of view, conversely, let us consider a Hopf hypersurface in SU 2,m/S(U2·Um) with 
Reeb invariant Ricci tensor, that is, LξS = 0. Then naturally, the purpose of this paper is to show Ricci 
commuting if the Ricci tensor is Reeb invariant. Then by virtue of Theorem B we assert the following
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Main Theorem. Let M be a Hopf hypersurface in SU 2,m/S(U2·Um) with Reeb invariant Ricci tensor, m≥3. 
Then M is locally congruent to an open part of a tube around some totally geodesic SU 2,m−1/S(U2·Um−1)
in SU 2,m/S(U2·Um) or a horosphere whose center at infinity with JX∈JX is singular.

A remarkable consequence of our Main Theorem is that a connected complete real hypersurface in 
SU 2,m/S(U2·Um), m ≥ 3 with Reeb invariant Ricci tensor is homogeneous and has a commuting Ricci tensor. 
This was also true in complex two-plane Grassmannians G2(Cm+2), which could be identified with symmetric 
space of compact type SUm+2/S(U2·Um), as follows from the classification. It would be interesting to 
understand the actual reason for it (see [1,2,9,11,12]).

2. The complex hyperbolic two-plane Grassmannian SU2,m/S(U2·Um)

In this section we summarize basic material about complex hyperbolic Grassmann manifolds SU2,m/

S(U2·Um), for details we refer to [1–3,5,6,12,17,18].
The Riemannian symmetric space SU 2,m/S(U2·Um), which consists of all complex two-dimensional linear 

subspaces in indefinite complex Euclidean space Cm+2
2 , becomes a connected, simply connected, irreducible 

Riemannian symmetric space of noncompact type and with rank two. Let G = SU 2,m and K = S(U2·Um), 
and denote by g and k the corresponding Lie algebra of the Lie group G and K respectively. Let B be the 
Killing form of g and denote by p the orthogonal complement of k in g with respect to B. The resulting 
decomposition g = k ⊕p is a Cartan decomposition of g. The Cartan involution θ ∈ Aut(g) on su2,m is given 
by θ(A) = I2,mAI2,m, where

I2,m =
(−I2 02,m

0m,2 Im

)

I2 and Im denotes the identity (2 ×2)-matrix and (m ×m)-matrix respectively. Then < X, Y >= −B(X, θY )
becomes a positive definite Ad(K)-invariant inner product on g. Its restriction to p induces a metric g on 
SU 2,m/S(U2·Um), which is also known as the Killing metric on SU 2,m/S(U2·Um). Throughout this paper 
we consider SU 2,m/S(U2·Um) together with this particular Riemannian metric g.

The Lie algebra k decomposes orthogonally into k = su2 ⊕ sum ⊕ u1, where u1 is the one-dimensional 
center of k. The adjoint action of su2 on p induces the quaternionic Kähler structure J on SU 2,m/S(U2·Um), 
and the adjoint action of

Z =
(

mi
m+2I2 02,m

0m,2
−2i
m+2Im

)
∈ u1

induces the Kähler structure J on SU 2,m/S(U2·Um).
We identify the tangent space ToSU 2,m/S(U2·Um) of SU 2,m/S(U2·Um) at o with p in the usual way. Let 

a be a maximal abelian subspace of p. Since SU 2,m/S(U2·Um) has rank two, the dimension of any such 
subspace is two. Every nonzero tangent vector X ∈ ToSU 2,m/S(U2·Um) ∼= p is contained in some maximal 
abelian subspace of p. Generically this subspace is uniquely determined by X, in which case X is called 
regular.

If there exists more than one maximal abelian subspaces of p containing X, then X is called singular. 
There is a simple and useful characterization of the singular tangent vectors: A nonzero tangent vector 
X ∈ p is singular if and only if JX ∈ JX or JX ⊥ JX.

Up to scaling there exists a unique S(U2·Um)-invariant Riemannian metric g on SU 2,m/S(U2·Um). 
Equipped with this metric SU 2,m/S(U2·Um) is a Riemannian symmetric space of rank two which is both 
Kähler and quaternionic Kähler.
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For computational reasons we normalize g such that the minimal sectional curvature of (SU 2,m/

S(U2·Um), g) is −4. The sectional curvature K of the noncompact symmetric space SU 2,m/S(U2·Um)
equipped with the Killing metric g is bounded by −4≤K≤0. The sectional curvature −4 is obtained for all 
2-planes CX when X is a nonzero vector with JX∈JX.

When m = 1, G∗
2(C3) = SU 1,2/S(U1·U2) is isometric to the two-dimensional complex hyperbolic space 

CH2 with constant holomorphic sectional curvature −4.
When m = 2, we note that the isomorphism SO(4, 2) � SU (2, 2) yields an isometry between G∗

2(C4) =
SU 2,2/S(U2·U2) and the indefinite real Grassmann manifold G∗

2(R6
2) of oriented two-dimensional linear 

subspaces of an indefinite Euclidean space R6
2. For this reason we assume m ≥ 3 from now on, although 

many of the subsequent results also hold for m = 1, 2.
The Riemannian curvature tensor R̄ of SU 2,m/S(U2·Um) is locally given by

R̄(X,Y )Z = −1
2

[
g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1
{g(JνY,Z)JνX − g(JνX,Z)JνY

− 2g(JνX,Y )JνZ}

+
3∑

ν=1
{g(JνJY, Z)JνJX − g(JνJX,Z)JνJY }

]
, (2.1)

where J1, J2, J3 is any canonical local basis of J.

3. Real hypersurfaces in SU2,m/S(U2·Um)

Let M be a real hypersurface in SU 2,m/S(U2·Um), that is, a submanifold in SU 2,m/S(U2·Um) with real 
codimension one. The induced Riemannian metric on M will also be denoted by g, and ∇ denotes the 
Levi Civita covariant derivative of (M, g). We denote by C and Q the maximal complex and quaternionic 
subbundle of the tangent bundle TM of M , respectively. Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N (3.1)

for any tangent vector field X of a real hypersurface M in SU 2,m/S(U2·Um), where φX denotes the tangential 
component of JX and N a unit normal vector field of M in SU 2,m/S(U2·Um).

From the Kähler structure J of SU 2,m/S(U2·Um) there exists an almost contact metric structure 
(φ, ξ, η, g) induced on M in such a way that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, and η(X) = g(X, ξ) (3.2)

for any vector field X on M and ξ = −JN .
If M is orientable, then the vector field ξ is globally defined and said to be the induced Reeb vector field

on M . Furthermore, let J1, J2, J3 be a canonical local basis of J. Then each Jν induces a local almost 
contact metric structure (φν , ξν , ην , g), ν = 1, 2, 3, on M . Locally, C is the orthogonal complement in TM
of the real span of ξ, and Q the orthogonal complement in TM of the real span of {ξ1, ξ2, ξ3}.

Furthermore, let {J1, J2, J3} be a canonical local basis of J. Then the quaternionic Kähler structure Jν
of SU 2,m/S(U2·Um), together with the condition

JνJν+1 = Jν+2 = −Jν+1Jν
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in section 1, induces an almost contact metric 3-structure (φν , ξν , ην , g) on M as follows:

φ2
νX = −X + ην(X)ξν , φνξν = 0, ην(ξν) = 1

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1 (3.3)

for any vector field X tangent to M . The tangential and normal component of the commuting identity 
JJνX = JνJX give

φφνX − φνφX = ην(X)ξ − η(X)ξν and ην(φX) = η(φνX). (3.4)

The last equation implies φνξ = φξν . The tangential and normal component of JνJν+1X = Jν+2X =
−Jν+1JνX give

φνφν+1X − ην+1(X)ξν = φν+2X = −φν+1φνX + ην(X)ξν+1 (3.5)

and

ην(φν+1X) = ην+2(X) = −ην+1(φνX). (3.6)

Putting X = ξν and X = ξν+1 into the first of these two equations yields φν+2ξν = ξν+1 and φν+2ξν+1 =
−ξν respectively. Using the Gauss and Weingarten formulas, the tangential and normal component of the 
Kähler condition (∇̄XJ)Y = 0 give (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ and (∇Xη)Y = g(φAX, Y ). The last 
equation implies ∇Xξ = φAX. Finally, using the explicit expression for the Riemannian curvature tensor 
R̄ of SU 2,m/S(U2·Um) in [3] the Codazzi equation takes the form

(∇XA)Y − (∇Y A)X = −1
2

[
η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX,Y )ξν

}

+
3∑

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}

+
3∑

ν=1

{
η(X)ην(φY ) − η(Y )ην(φX)

}
ξν

]
(3.7)

for any vector fields X and Y on M . Moreover, by the expression of the curvature tensor (2.1), we have the 
equation of Gauss as follows:

R(X,Y )Z = −1
2

[
g(Y,Z)X − g(X,Z)Y

+ g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ

+
3∑

{g(φνY,Z)φνX − g(φνX,Z)φνY − 2g(φνX,Y )φνZ}

ν=1
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+
3∑

ν=1
{g(φνφY,Z)φνφX − g(φνφX,Z)φνφY }

−
3∑

ν=1
{η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY }

−
3∑

ν=1
{η(X)g(φνφY,Z) − η(Y )g(φνφX,Z)} ξν

]

+ g(AY,Z)AX − g(AX,Z)AY (3.8)

for any vector fields X, Y , and Z on M . Here after, unless otherwise stated, we want to use these basic 
equations mentioned above frequently without referring to them explicitly.

4. Some preliminaries in SU 2,m/S(U2·Um)

In this section we can introduce some preliminaries in SU 2,m/S(U2·Um) corresponding to the formulas 
given in [12] from the affection of the negative curvature tensor (3.8). Now let us contract Y and Z in the 
equation of Gauss (3.8) in section 3. Then the negativity of the curvature tensor for a real hypersurface M
in SU 2,m/S(U2·Um) gives a Ricci tensor defined by

SX =
∑4m−1

i=1
R(X, ei)ei

= −1
2

[
(4m + 10)X − 3η(X)ξ − 3

3∑
ν=1

ην(X)ξν

+
3∑

ν=1
{(Trφνφ)φνφX − (φνφ)2X}

−
3∑

ν=1
{ην(ξ)φνφX − η(X)φνφξν}

−
3∑

ν=1
{(Tr φνφ)η(X) − η(φνφX)}ξν

]
+ hAX −A2X, (4.1)

where h denotes the trace of the shape operator A of M in SU 2,m/S(U2·Um). From the formula JJν = JνJ , 
Tr JJν = 0, ν = 1, 2, 3 we calculate the following for any basis {e1, · · ·, e4m−1, N} of the tangent space of 
SU 2,m/S(U2·Um)

0 = Tr JJν

=
∑4m−1

k=1
g(JJνek, ek) + g(JJνN,N)

= Tr φφν − ην(ξ) − g(JνN, JN)

= Tr φφν − 2ην(ξ) (4.2)

and

(φνφ)2X = φνφ(φφνX − ην(X)ξ + η(X)ξν)

= φν(−φνX + η(φνX)ξ) + η(X)φν
2ξ

= X − ην(X)ξν + η(φνX)φνξ
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+ η(X){−ξ + ην(ξ)ξν}. (4.3)

Substituting (4.2) and (4.3) into (4.1), we have

SX = −1
2

[
(4m + 7)X − 3η(X)ξ − 3

3∑
ν=1

ην(X)ξν

+
3∑

ν=1
{ην(ξ)φνφX − η(φνX)φνξ − η(X)ην(ξ)ξν}

]

+ hAX −A2X. (4.4)

Remark 4.1. If a real hypersurface M in SU 2,m/S(U2·Um) is locally congruent to an open part of a tube 
around some totally geodesic SU 2,m−1/S(U2·Um−1) in SU 2,m/S(U2·Um) or a horosphere whose center at 
infinity with JX∈JX is singular, then the Reeb vector field ξ = ξ1, and the mean curvature h should be 
constant. Also it can be easily checked that the above kind of tube or a horosphere satisfy LξA = 0 (see 
[21]). Moreover, for the fact that ξ = ξ1 they satisfy Lξφ = 0, Lξφ1 = 0, and

(Lξη2)⊗ξ2 + η2⊗Lξξ2 + (Lξη3)⊗ξ3 + η3⊗Lξξ3 = 0

from their geometric properties in (3.1), (3.2), (3.3) and (3.4). In particular, the last formula mentioned 
above can be derived from Lξξ2 = q1(ξ)ξ3 − (α− β)ξ3 and Lξξ3 = −q1(ξ)ξ2 + (α− β)ξ2. Then by virtue of 
these properties, they naturally satisfy LξS = 0, that is, the Ricci tensor is Reeb invariant.

In this section, we consider the converse problem. If the Ricci tensor of M in SU 2,m/S(U2·Um) is Reeb 
invariant, what can we say about such a hypersurface M . So in order to give a complete classification for 
M in SU 2,m/S(U2·Um) satisfying LξS = 0, we want to compute the following

SφX = −1
2

[
(4m + 7)φX − 3

3∑
ν=1

ην(φX)ξν

+
3∑

ν=1
{ην(ξ)φνφ

2X − η(φνφX)φνξ − η(φX)ην(ξ)ξν}
]

+ hAφX −A2φX (4.5)

and

φSX = −1
2

[
(4m + 7)φX − 3

3∑
ν=1

ην(X)φξν

+
3∑

ν=1
{ην(ξ)φφνφX − η(φνX)φφνξ − η(X)ην(ξ)φξν}

]

+ hφAX − φA2X. (4.6)

Then from (4.5) and (4.6) it follows that

(φS − Sφ)X = 2
3∑

ν=1
ην(X)φξν − 2

3∑
ν=1

ην(φX)ξν + h(φA−Aφ)X

− (φA2 −A2φ)X. (4.7)
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So we are able to calculate the following

Tr (φS − Sφ)2 = hTr (φA−Aφ)(φS − Sφ) − Tr (φA2 −A2φ)(φS − Sφ)

+ 2
3∑

ν=1
Tr (ην⊗φξν)(φS − Sφ)

− 2
3∑

ν=1
Tr (η◦φ⊗ξν)(φS − Sφ). (4.8)

On the other hand, the terms in the right side of (4.8) respectively given by

Tr (ην⊗φξν)(φS − Sφ) =
∑

i
g(ην((φS − Sφ)ei)φξν , ei)

=
∑

i
g((φS − Sφ)ei, ξν)g(φξν , ei) = g((φS − Sφ)φξν , ξν)

= −g(φξν , (φS − Sφ)ξν) (4.9)

and

Tr (ην◦φ⊗ξν)(φS − Sφ) =
∑

i
g(ην((φ2S − φSφ)ei)ξν , ei)

= ην((φ2S − φSφ)ξν) = −g((φS − Sφ)ξν , φξν). (4.10)

Then by (4.9) and (4.10), the formula (4.8) becomes

Tr (φS − Sφ)2 = hTr (φA−Aφ)(φS − Sφ) − Tr (φA2 −A2φ)(φS − Sφ)

= −Tr (φA2 −A2φ)(φS − Sφ),

where we have used (φA −Aφ)S = S(φA −Aφ) from the symmetry of LξS = 0 and

Tr (φA−Aφ)(φS − Sφ) = TrS(φA−Aφ)φ− Tr(φA−Aφ)Sφ

= Tr(φA−Aφ)Sφ− Tr(φA−Aφ)Sφ

= 0

From this, the right side becomes

Tr (φA2 −A2φ)(φS − Sφ) = TrφA2φS − TrA2φ2S − TrφA2Sφ

+ TrA2φSφ

= 2Tr φA2φS − TrA2φ2S − TrφA2Sφ. (4.11)

On the other hand, the symmetry of ∇ξS = φAS − SφA, which is equivalent to LξS = 0, gives

(φA−Aφ)S = S(φA−Aφ),

where we have used for any X, Y in M

g((φAS − SφA)X,Y ) = g((φAS − SφA)Y,X) = g((AφS − SAφ)X,Y ).

This implies
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φA(φAS − SφA + SAφ−AφS) = 0,

so that we know

Tr φASAφ = Tr φA2φS, (4.12)

because

TrφA(φAS − SφA) = Tr(φA)2S − Tr(φA)S(φA)

= Tr(φA)2S − Tr(φA)2S.

Then from (4.11) and (4.12) it follows that

Tr (φS − Sφ)2 = −Tr (φA2 −A2φ)(φS − Sφ)

= Tr φ2SA2 + Tr φ2A2S − 2Tr φ2ASA. (4.13)

On the other hand, the right side of (4.13) can be calculated term by term as follows:

Tr φ2ASA = Tr (−ASA + η(ASA)ξ) = −Tr ASA + η(ASAξ),

Tr φ2SA2 = Tr (−SA2 + η(SA2)ξ) = −Tr SA2 + η(SA2ξ),

and

Tr φ2A2A = Tr (−A2S + η(A2S)ξ) = −Tr A2S + η(A2Sξ).

Substituting these formulas into (4.13) gives the following

Tr (φS − Sφ)2 = −Tr SA2 + η(SA2ξ) − Tr A2S + η(A2Sξ)

+ 2Tr ASA− 2η(ASAξ)

= 2η(SA2ξ) − 2η(ASAξ). (4.14)

Now from the expression of the Ricci tensor (4.4) for the Reeb vector field ξ we have the following respec-
tively

Sξ = −2(m + 1)ξ + 2
3∑

ν=1
ην(ξ)ξν + hAξ −A2ξ,

and

η(SA2ξ) = −2(m + 1)‖Aξ‖2 + 2
3∑

ν=1
ην(ξ)g(ξν , A2ξ)

+ hg(Aξ, ξ) − g(A2ξ, A2ξ),

η(ASAξ) = g(SAξ,Aξ)

= −1
2

[
(4m + 7)g(Aξ,Aξ) − 3η(Aξ)2 − 3

3∑
ην(Aξ)2
ν=1
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+
3∑

ν=1
{ην(ξ)g(φνφAξ,Aξ) − η(φνAξ)g(φνξ, Aξ)

− η(Aξ)ην(ξ)ην(Aξ)}
]

+ hg(A2ξ, Aξ) − g(A3ξ, Aξ).

Then the formula (4.14) for M in SU 2,m/S(U2·Um) becomes

Tr (φS − Sφ)2 = 2η(SA2ξ) − 2η(ASAξ)

= 3‖Aξ‖2 − 3η(Aξ)2 − 3
3∑

ν=1
ην(Aξ)2

+ 4
3∑

ν=1
ην(ξ)ην(A2ξ) +

3∑
ν=1

{
ην(ξ)g(φνφAξ,Aξ)

+ η(φνAξ)2 − η(Aξ)ην(ξ)ην(Aξ)
}
. (4.15)

From this, together with (3.2), (3.3), (3.4) and the notion of Hopf, the right side of (4.15) should be vanishing 
as follows:

Tr (φS − Sφ)2 = −3α2
3∑

ν=1
ην(ξ)2 + 4α2

3∑
ν=1

ην(ξ)2 − α2
3∑

ν=1
ην(ξ)2 = 0

if we assume that a Hopf hypersurface M in SU 2,m/S(U2·Um) satisfies LξS = 0. This gives that the Ricci 
tensor S commutes with the structure tensor φ, that is, Sφ = φS. Then by Theorem B we can assert our 
main result. This gives a complete proof of our Main Theorem.
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