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1. Introduction

In the geometry of real hypersurfaces in complex space forms M,,(c) or in quaternionic space forms
Qm(c) Kimura [7,8] (resp. Pérez and Suh [10]) considered real hypersurfaces in M, (¢) (resp. in Q,,(c)) with
commuting Ricci tensor, that is, S¢ = ¢S, (resp. S¢; = ¢;5, i = 1,2,3) where S and ¢ (resp. S and ¢,
i =1,2,3) denote the Ricci tensor and the structure tensor of real hypersurfaces in M, (c) (resp. in @, (c)).

In [7.8], Kimura has classified that a Hopf hypersurface M in complex projective space P,,(C) with
commuting Ricci tensor is locally congruent to of type (A), a tube over a totally geodesic Py(C), of type
(B), a tube over a complex quadric Q,,_1, cot® 2r = m — 2, of type (C), a tube over Py (C)x Pn—1),2(C),
cot? 2r = ﬁ and n is odd, of type (D), a tube over a complex two-plane Grassmannian Go(C?), cot? 2r = %

and n = 9, of type (E), a tube over a Hermitian symmetric space SO(10)/U(5), cot®2r = 2 and m = 15.
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On the other hand, in a quaternionic projective space QP™ Pérez and Suh [10] have classified real
hypersurfaces in QP™ with commuting Ricci tensor S¢; = ¢;5, i = 1,2,3, where S (resp. ¢;) denotes the
Ricci tensor (resp. the structure tensor) of M in QP™, is locally congruent to of Ay, As-type, that is, a tube
over QP* with radius 0 < r < %, k€{0,---,m—1}. The almost contact structure vector fields {¢;, &2, &3} are
defined by & = —J;N, i = 1,2,3, where J;, i = 1,2, 3, denote a quaternionic Kéhler structure of QP™ and
N a unit normal field of M in QP™. Moreover, Pérez and Suh [9] have considered the notion of V¢, R =0,
1 =1,2,3, where R denotes the curvature tensor of a real hypersurface M in QP™, and proved that M is
locally congruent to a tube of radius 7 over QPEk.

Let us denote by SUs,, the set of (m + 2)x (m + 2)-indefinite special unitary matrices and U, the set of
mXm-unitary matrices. Then the Riemannian symmetric space SUs ,,/S(U2U,,), m > 2, which consists of
complex two-dimensional subspaces in indefinite complex Euclidean space C’Q”J“Q, has a remarkable feature
that it is a Hermitian symmetric space as well as a quaternionic Kéhler symmetric space. In fact, among
all Riemannian symmetric spaces of noncompact type the symmetric spaces SUs ,,,/S(U2U,,), m > 2, are
the only ones which are Hermitian symmetric and quaternionic Kéhler symmetric.

The existence of these two structures leads to a number of interesting geometric problems on
SUs.m/S(UsUy,), one of which we are going to study in this article. To describe this problem, we de-
note by J the Kéhler structure and by J the quaternionic Kéhler structure a quaternionic Kéhler structure
J not containing J on SUs ,,,/S(U2U,,) defined by J = Span{Ji, Ja, Js}. Let M be a connected hypersur-
face in SUg 1, /S(U2U,,) and denote by N a unit normal to M. Then a structure vector field £ defined by
& = —JN is said to be a Reeb vector field.

Next, we consider the standard embedding of SUs ,,,—1 in SUs3 ;.. Then the orbit SUsg p—1-0 of SUg 1
through o is the Riemannian symmetric space SUgz m—1/S(U2Up—1) embedded in SUs ., /S(U2Uy,) as a
totally geodesic submanifold. Every tube around SUsg ,,,—1/S(U2Up—1) in SUg 1, /S(U2U,,) has the property
that both maximal complex subbundle C and quaternionic subbundle Q are invariant under the shape
operator.

Finally, let m be even, say m = 2n, and consider the standard embedding of Sp, ,, in SUz 2. Then the
orbit Sp; ,, - 0 of Sp; ,, through o is the quaternionic hyperbolic space HH™ embedded in SUs 2, /S(U2Uay)
as a totally geodesic submanifold. Any tube around HH™ in SUs 2,/S(U2Us,) has the property that both
C and Q are invariant under the shape operator.

As a converse of the statements mentioned above, we assert that with one possible exceptional case there
are no other such real hypersurfaces. Related to such a result and the work in Eberlein [4], we introduce
another theorem due to Berndt and Suh [3] as follows:

Theorem A. Let M be a connected hypersurface in SUs . /S(UsUp,), m > 2. Then the mazimal complex
subbundle C of TM and the maximal quaternionic subbundle Q of TM are both invariant under the shape
operator of M if and only if M is congruent to an open part of one of the following hypersurfaces:

(A) a tube around a totally geodesic SUsz m—1/S(UaUpm—1) in SUgz 1 /S(UUy,);
(B) a tube around a totally geodesic HH™ in SUs 2,,/S(UsUsy,), m = 2n;
(C) a horosphere in SUg m/S(U2Uy,) whose center at infinity is singular;

or the following exceptional case holds:

(D) The normal bundle vM of M consists of singular tangent vectors of type JX L JX. Moreover, M has
at least four distinct principal curvatures, three of which are given by

a=vV2,~v=0, A=

Sl
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with corresponding principal curvature spaces
To=TMc(CNQ), T,=JTMcQ), ThCcCNANJQ.

If i is another (possibly nonconstant) principal curvature function, then we have T, C CN QN JQ,
JT,, C Ty and 3T, C T.

In Theorem A the maximal complex subbundle C of T'M is invariant under the shape operator if and only
if the Reeb vector field £ becomes a principal vector field for the shape operator A of M in SUsg ., /S(U2Up,).
In this case the Reeb vector field ¢ is said to be a Hopf vector field. The flow generated by the integral
curves of the structure vector field ¢ for Hopf hypersurfaces in Go(C™*2) is said to be a geodesic Reeb flow.

In the proof of Theorem A we proved that the 1-dimensional distribution [£] is contained in either the
3-dimensional distribution Q or in the orthogonal complement Q such that T,M = Q®Q'. The case
(A) in Theorem A is just the case that the 1-dimensional distribution [¢] belongs to the distribution Q.
Of course, it is not difficult to check that the Ricci tensor S of type (A) or of type (C) with JX€JX in
Theorem A commutes with the structure tensor, that is S¢ = ¢S. Then it must be a natural question to
ask whether real hypersurfaces in SUsg ,/S(Uz-Uy,) with commuting Ricci tensor can exist or not.

On the other hand, in due to [19] Suh has considered such a converse problem and has given a complete
classification of real hypersurfaces in SUs ,,/S(Uz-Up,) satisfying S¢ = ¢S as follows:

Theorem B. Let M be a Hopf hypersurface in SUsz .,/ S(Uz-Uy,) with commuting Ricci tensor, m>3. Then
M s locally congruent to an open part of a tube around some totally geodesic SUgm—1/S(Ua-Up—1) in
SUs.m/S(Uz-Up,) or a horosphere whose center at infinity with JX€JX is singular.

In a compact complex two-plane Grassmannian Go(C™%2) we have considered the notion of Ricci com-
muting [12], S¢ = ¢S, and give a characterization of type (A), which is a tube over a totally geodesic
G2(C™*1) in Go(C™*2) and have proved a nonexistence property for real hypersurfaces in Go(C™*2)
with parallel Ricci tensor in [14]. Then, naturally, we can consider more general notions like Reeb invari-
ant, semi-parallel, harmonic curvature, and Reeb parallel which are given by LS = 0, R(X,Y)S = 0,
(VxS)Y = (VyS)X, VS =0, for any vector fields X and Y and the Reeb vector field £ on real hypersur-
faces M in Go(C™*?) respectively, where R(X,Y) and S denote the curvature tensor and the Ricci tensor
of M in Go(C™*2) (see [13,15,16]). These conditions are weaker than usual notion of parallel Ricci tensor.

Motivated by such notions for M in Go(C™%2), recently, Suh and Woo [20] have considered the notion
of Ricci parallel, that is, V.S = 0 in complex hyperbolic two-plane Grassmannians SUs ,,,/S(Uz-Up,), m>3,
and proved that there do not exist any hypersurfaces in SUs ,,,/S(Us2-Up,) with parallel Ricci tensor.

As mentioned in Theorem B, when a real hypersurface M in SUs ,,,/S(Us2-Uy,) is locally congruent to an
open part of a tube over a totally geodesic SUg ym—1/S(Uz-Up—1) in SUsg 1, /S (Uz-Upy,) or a horosphere, the
Reeb vector field becomes & = &;, and it becomes LA = 0 (see [21]). From this, together with the other
formula L¢p =0, Legpy =0, and

(Len2) @& + ma®@Le&o + (Lens)RE3 + n3@Le&s = 0.

Then it can be easily checked that they satisfy £¢S = 0. In this case, we say that M has a Reeb invariant
Ricci tensor.

From such a point of view, conversely, let us consider a Hopf hypersurface in SUs ,/S(Us-U,,) with
Reeb invariant Ricci tensor, that is, £¢S = 0. Then naturally, the purpose of this paper is to show Ricci
commuting if the Ricci tensor is Reeb invariant. Then by virtue of Theorem B we assert the following
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Main Theorem. Let M be a Hopf hypersurface in SUs ,,/S(Usz-Up,) with Reeb invariant Ricci tensor, m>3.
Then M s locally congruent to an open part of a tube around some totally geodesic SUg m—1/S(Us-Up—1)
in SUg.1m/S(Us-Up,) or a horosphere whose center at infinity with JX€JX is singular.

A remarkable consequence of our Main Theorem is that a connected complete real hypersurface in
SU2,m /S(Uz-Up,), m > 3 with Reeb invariant Ricci tensor is homogeneous and has a commuting Ricei tensor.
This was also true in complex two-plane Grassmannians Go(C™%2), which could be identified with symmetric
space of compact type SU,+2/S(Us-Uy,), as follows from the classification. It would be interesting to
understand the actual reason for it (see [1,2,9,11,12]).

2. The complex hyperbolic two-plane Grassmannian SUs ,, /S (Uz2-U,,)

In this section we summarize basic material about complex hyperbolic Grassmann manifolds SUs ,/
S(Usy-Up,), for details we refer to [1-3,5,6,12,17,18].

The Riemannian symmetric space SUs ,,/S(Us-Uyy,), which consists of all complex two-dimensional linear
subspaces in indefinite complex Fuclidean space (Cg“”, becomes a connected, simply connected, irreducible
Riemannian symmetric space of noncompact type and with rank two. Let G = SUs ,, and K = S(Uz-Up,),
and denote by g and £ the corresponding Lie algebra of the Lie group G and K respectively. Let B be the
Killing form of g and denote by p the orthogonal complement of ¢ in g with respect to B. The resulting
decomposition g = €@ p is a Cartan decomposition of g. The Cartan involution § € Aut(g) on sus ,, is given

by 6(A) = I Al py,, where
I2 = _12 O2,m
' 0m,2 Im

Iy and I,,, denotes the identity (2 x 2)-matrix and (m X m)-matrix respectively. Then < XY >= —B(X,6Y)
becomes a positive definite Ad(K)-invariant inner product on g. Its restriction to p induces a metric g on
SUs.m/S(Us-Up,), which is also known as the Killing metric on SUs,,/S(Uz2-U,,). Throughout this paper
we consider SUs ,,,/S(Usz-U,y,) together with this particular Riemannian metric g.

The Lie algebra £ decomposes orthogonally into ¢ = sus & su,, @ u;, where u; is the one-dimensional
center of £. The adjoint action of sus on p induces the quaternionic Kéhler structure J on SUs ,,,/S(Uz-Up, ),

Ty Ogm
7 = ( +2 Y I ) SIS

0m,2 m+21im

and the adjoint action of

induces the Kéhler structure J on SUsg ., /S(Uz-Up,).

We identify the tangent space T,SUsg.1,/S(Uz-Up,) of SUa,m/S(Usz-Uy,) at o with p in the usual way. Let
a be a maximal abelian subspace of p. Since SUs,,/S(Uz-Uy,) has rank two, the dimension of any such
subspace is two. Every nonzero tangent vector X € T,5Us2 1,,/S(Us-Up,) = p is contained in some maximal
abelian subspace of p. Generically this subspace is uniquely determined by X, in which case X is called
regular.

If there exists more than one maximal abelian subspaces of p containing X, then X is called singular.
There is a simple and useful characterization of the singular tangent vectors: A nonzero tangent vector
X € p is singular if and only if JX € JX or JX L JX.

Up to scaling there exists a unique S(Uz-Uy,)-invariant Riemannian metric g on SUsg . /S(Uz-Up).
Equipped with this metric SUs ,,/S(Us2-U,y,) is a Riemannian symmetric space of rank two which is both
Kéhler and quaternionic Kéahler.
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For computational reasons we normalize g such that the minimal sectional curvature of (SUsz .,/
S(U2-U,,),g) is —4. The sectional curvature K of the noncompact symmetric space SUs ,,/S(Usz-U,)
equipped with the Killing metric g is bounded by —4<K <0. The sectional curvature —4 is obtained for all
2-planes CX when X is a nonzero vector with JXeJX.

When m = 1, G3(C3?) = SU1,2/S(U;-Us) is isometric to the two-dimensional complex hyperbolic space
CH? with constant holomorphic sectional curvature —4.

When m = 2, we note that the isomorphism SO(4,2) ~ SU(2,2) yields an isometry between G%(C*) =
SUs.2/S(Us-Us) and the indefinite real Grassmann manifold G%(RS) of oriented two-dimensional linear
subspaces of an indefinite Euclidean space RS. For this reason we assume m > 3 from now on, although
many of the subsequent results also hold for m = 1, 2.

The Riemannian curvature tensor R of SU 2.m/S(Uz-Uy,) is locally given by

R(X,Y)Z = f% [0(Y. 2)X — g(X.2)Y + 9(JY. 2)JX

—

—g(JX,2)JY —29(JX,Y)JZ

+ {gJYZJX 9(J,X,2)1,Y

Mm

729

A»—A

J,X,Y)J,Z}

+

NE

{9(J,JY,2)J,JX — g(J,JX, Z)J,JY}|, (2.1)

v=1

where Ji, Jo, J3 is any canonical local basis of J.
3. Real hypersurfaces in SU3 ,,/S(U2-U,y,)

Let M be a real hypersurface in SUs,,/S(Usz-U,,), that is, a submanifold in SUs ., /S(Usz-U,,) with real
codimension one. The induced Riemannian metric on M will also be denoted by ¢, and V denotes the
Levi Civita covariant derivative of (M, g). We denote by C and Q the maximal complex and quaternionic
subbundle of the tangent bundle T'M of M, respectively. Now let us put

JX = ¢X +n(X)N, J,X = ¢, X +n,(X)N (3.1)

for any tangent vector field X of a real hypersurface M in SUs . /S(Uz2-U,, ), where ¢ X denotes the tangential
component of JX and N a unit normal vector field of M in SUsg /S (Uz-Up,).

From the Kéhler structure J of SUs,,/S(Us-Uy,) there exists an almost contact metric structure
(¢,€,7,9) induced on M in such a way that

X = —X +0(X)¢, n(§) =1, ¢ =0, and n(X)=g(X,¢) (3.2)

for any vector field X on M and £ = —JN.

If M is orientable, then the vector field £ is globally defined and said to be the induced Reeb vector field
on M. Furthermore, let Ji, Jo, J3 be a canonical local basis of J. Then each J, induces a local almost
contact metric structure (¢,,&,,1,,9), v = 1,2,3, on M. Locally, C is the orthogonal complement in T'M
of the real span of £, and Q the orthogonal complement in TM of the real span of {£1, &2, &3}

Furthermore, let {Jy, Jo, J3} be a canonical local basis of J. Then the quaternionic Ké&hler structure .J,
of SUz,m/S(Usz-U,,), together with the condition

Jny+1 = JV+2 = - V—‘rlJV
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in section 1, induces an almost contact metric 3-structure (¢,,&,,m.,9) on M as follows:

o X ==X +1,(X)&, ¢6 =0, (&) =1

418y = —Eut2, Pubuy1 = Euta,

v Pu41X = dui2X + M1 (X)&,

u+100 X = =2 X + 1 (X)E41 (3.3)

for any vector field X tangent to M. The tangential and normal component of the commuting identity
JIX = J,JX give

0o, X — ¢, X = UV(X)g - U(X)fu and 771/(¢X) = 77(¢VX)' (34)

The last equation implies ¢, = ¢€,. The tangential and normal component of J,J, 11X = J,12X =
- u+1JVX give

G Pri1X — 77u+1(X)§u =42 X = P10, X + nu(X)fqul (3‘5)

and

77V(¢V+1X) = 77u+2(X) = —17,,+1((;5,,X). (3~6)

Putting X = ¢, and X = £,,1 into the first of these two equations yields ¢, 126, = &,41 and ¢, 128,41 =
—&, respectively. Using the Gauss and Weingarten formulas, the tangential and normal component of the
Kihler condition (VxJ)Y =0 give (Vx¢)Y =n(Y)AX — g(AX,Y)¢ and (Vxn)Y = g(pAX,Y). The last
equation implies Vx¢& = ¢AX. Finally, using the explicit expression for the Riemannian curvature tensor
R of SUs,,/S(Uz-U,,) in [3] the Codazzi equation takes the form

(VxA)Y = (Vy A)X = =3 [1(X)8Y —n(¥)pX — 2g(¢X, Y )¢

DN | =

3
3 {n(XN)bY — m (V)6 X — 296X, Y)E, )

3
+ 3 {m(6X)6u8Y — (Y )by X }

v=1

3
+ 3 {n(X)m(@Y) = n(Y ) (6X) 16, | (3.7)

for any vector fields X and Y on M. Moreover, by the expression of the curvature tensor (2.1), we have the
equation of Gauss as follows:

R(X,Y)Z =~ |g(¥, )X — g(X, 2)Y

+ g(oY, 2)pX — g(pX, Z)6Y — 29(6X.Y)Z
3
+ > {g(6Y, Z2)6 X — g(6,X, 2)$,Y — 29(6, X, Y ), Z}

v=1
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3
+ > {9(6u0Y, Z)p, X — g(6,0X, Z)p 0¥ }

v=1

—Z{n Z)pu X —1(X)nu(Z)pudY '}

- Z (n(X)g(u0Y, Z) — n(Y)g(¢,0X, Z)} &,
+ g(AY, Z)AX — g(AX, Z)AY (3.8)

for any vector fields X, Y, and Z on M. Here after, unless otherwise stated, we want to use these basic
equations mentioned above frequently without referring to them explicitly.

4. Some preliminaries in SU3 ,,/S(Uz-Uy,)

In this section we can introduce some preliminaries in SUs ,,/S(Uz-Up,) corresponding to the formulas
given in [12] from the affection of the negative curvature tensor (3.8). Now let us contract Y and Z in the
equation of Gauss (3.8) in section 3. Then the negativity of the curvature tensor for a real hypersurface M
in SU3,m/S(Usz-Uy,) gives a Ricci tensor defined by

4m—1

SX=3  RXee

3
—% [(4m +10)X — 35(X)E — SZnV(X
3
+3 {(Trgud)pud X — (¢9)*X }
3
= {m(©)dudX —n(X)dy 6, }
v=1

3
= > (T 6,B)n(X) — (66 X)}E | +hAX — A2X, (4.1)

where h denotes the trace of the shape operator A of M in SUs ,/S(Uz-Up,). From the formula JJ, = J,J,
Tr JJ, =0, v = 1,2,3 we calculate the following for any basis {e1, -, esm—1, N} of the tangent space of

SU27m/S(U2Um)
0=Tr JJ,
_Zk ) JJek,ek)—i—g(JJNN)
=Tr ¢d, — 0 (€) — g(JuN, JN)
=Tr ¢¢V - 277V(£) (42)

and

(¢u¢)2X = ¢U¢(¢¢VX - UV(X)§ + W(X)fu)
= ¢u (= X + (¢, X)E) + 1(X)h ¢
=X = (X)& + (o X) b€
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n(XH{=¢+m (&} (4.3)

Substituting (4.2) and (4.3) into (4.1), we have

SX =

l\9|’—‘

[(4m +7)X — 3n(X)E —33 (X

3
+ Z{nu<£)¢V¢X - 77((/5VX)¢V§ - n(X)Tlu(f)fu}

v=1

+hAX — A%X. (4.4)

Remark 4.1. If a real hypersurface M in SUs,,/S(Us-U,,) is locally congruent to an open part of a tube
around some totally geodesic SUsg—1/S(Uz-Upm—1) in SUz /S (Us-Upy,) or a horosphere whose center at
infinity with JX€JX is singular, then the Reeb vector field £ = &, and the mean curvature h should be
constant. Also it can be easily checked that the above kind of tube or a horosphere satisfy L;A = 0 (see
[21]). Moreover, for the fact that £ = & they satisfy Le¢p =0, L1 = 0, and

(Lem2)@E2 + me@Lelo + (Lenz)RE3 + 13@Lel3 =0

from their geometric properties in (3.1), (3.2), (3.3) and (3.4). In particular, the last formula mentioned
above can be derived from L¢€s = ¢1(§)&3 — (o — B)&3 and Le&€s = —q1(€)&2 + (v — B)&2. Then by virtue of
these properties, they naturally satisfy £¢S = 0, that is, the Ricci tensor is Reeb invariant.

In this section, we consider the converse problem. If the Ricci tensor of M in SUs,,/S(Uz-U,,) is Reeb
invariant, what can we say about such a hypersurface M. So in order to give a complete classification for
M in SUs3,,/S(Us-Up,) satisfying LS = 0, we want to compute the following

—_

3
SOX = =3 [(4m + 7)o X — 30, (6X)¢,
v=1

3
+ 3 (8 X — 1(6u6X) 806 — n(6X ), ()6 )]

v=1
+hApX — A%pX (4.5)
and
$SX = —% [(4m +7)6X — 3277,, Vo€,

v=1

3
+ > (€)006X — (6, X)66,6 — n(X ) ()06,

v=1

+ h¢pAX — pA%X. (4.6)

Then from (4.5) and (4.6) it follows that

(¢S — S¢)X —2Zm %—22% $X)E, + h(pA — Ap)X

v=1

— (¢A2 — A%p)X. (4.7)
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So we are able to calculate the following
Tr (¢S — S¢)* = hTr (pA — Ag)(6S — S¢) — Tr (pA* — A%¢) (S — S0)

3
+23 T (,©66,)(6S — 59)

v=1

3
—2) "Tr (nop@€,) (S — S¢). (4.8)
v=1
On the other hand, the terms in the right side of (4.8) respectively given by

Tr (0,@¢€,) (65 — 56) =) g (65 — Sd)ei) b6y, i)

= 9((9S = Sd)ei, £,)9(66y, e1) = g(($S — 56)¢€y,6.)
= _g(d)gl/, <¢S - S¢)€V) (49)

and

Tr (10,0096, (@S — S¢) = Y g(n.(#°S — pS)ei)éy, e:)
= nu((¢25 — ¢S¢)£V) = _g((¢S - S¢)£V7 ¢€V) (410)

Then by (4.9) and (4.10), the formula (4.8) becomes

Tr (¢S — 5¢)* = I'Tr (¢A — Ad)(¢S — S¢) — Tr (¢A* — A%9)(4S — S¢)
= —Tr (pA? — A29)(6S — S9),

where we have used (pA — A¢)S = S(pA — A¢) from the symmetry of LS = 0 and

Tr (pA — A9)(9S — 5¢) = TrS(pA — Ag)¢ — Tr(gpA — A9)S¢
= Tr(¢pA — Ap)S¢ — Tr(pA — A9)S¢
=0

From this, the right side becomes

Tr (pA? — A%9) (¢S — S¢) = TrpA%pS — TrA%2¢?S — Trop A%S¢
+ TrA%2¢S¢
= 2Tr ¢pA%pS — TrA2¢%S — TrpA%Sé. (4.11)

On the other hand, the symmetry of V¢S = ¢AS — S¢A, which is equivalent to LS = 0, gives
(pA — Ap)S = S(¢pA — Ag),
where we have used for any X, Y in M
9((pAS — S9A)X,Y) = g((¢AS — SpA)Y, X) = g((ApS — SA$)X,Y).

This implies
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PA(PAS — SpA+ SAG — ApS) = 0,
so that we know
Tr pASAp = Tr pA%pS, (4.12)
because

TrpA(¢AS — SpA) = Tr(pA)*S — Tr(pA)S(¢A)
= Tr(pA)%S — Tr(pA)?S.

Then from (4.11) and (4.12) it follows that

Tr (¢S — 5¢)* = —Tr (pA% — A%¢)(S — S¢)
=Tr ¢?SA? + Tr ¢?A%S — 2Tr ¢>ASA. (4.13)

On the other hand, the right side of (4.13) can be calculated term by term as follows:

Tr 2 ASA = Tr (—ASA +n(ASA)E) = —Tr ASA + n(ASAE),
Tr ¢p?SA? = Tr (—SA? +n(SA?)E) = —Tr SA® + n(SA%),

and
Tr ¢p?A%A = Tr (—A%S +n(A%S)¢) = —Tr A%S + n(A%SE).
Substituting these formulas into (4.13) gives the following

Tr (¢S — S¢)* = —Tr SA? + n(SA%E) — Tr A%S + n(A%S¢)
+2Tr ASA — 2n(ASAE)
= 2n(SA%E) — 2n(ASAL). (4.14)

Now from the expression of the Ricci tensor (4.4) for the Reeb vector field £ we have the following respec-

tively

3

S& = —2(m + 1) +2) m ()&, + hAL — A%,

v=1
and

3
N(SA%E) = =2(m + 1)[|A&|* + 2> nu(€)g(&y, A%€)

v=1

+ hg(A€7 f) - g(A2§a A2§)7
n(ASAE) = g(SAE, AS)

= 3 [(am + T)g(Ag, 48) — 3(A8)* ~ Y m (Ac)?
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+ > {m(©)g(drdAE, AE) — (¢, AL)g($1€, AE)

— N(AmAE)N(AE)}] + hg(A%€, AE) — g(A%E, A¢).
Then the formula (4.14) for M in SUs /S (Us2-U,y,) becomes

Tr (65 — S)* = 2n(SA*¢) — 2n(ASAE)
3

= 3|l A¢|1” — 3n(AE)* — 3D “mu(AL)?

v=1

4 (€ (4%) + 3 {m(©)g(6,0A¢, A)

16, A8 = (AL, (E)n (A€) }. (4.15)

From this, together with (3.2), (3.3), (3.4) and the notion of Hopf, the right side of (4.15) should be vanishing
as follows:

3 3 3
Tr (S — 5¢)° = =3 m,(€)* +40”Y n,(€)* —a®> m()* =0
v=1 v=1 v=1

if we assume that a Hopf hypersurface M in SUs ,,/S(Us-U,,) satisfies L¢S = 0. This gives that the Ricci
tensor S commutes with the structure tensor ¢, that is, S¢ = ¢S. Then by Theorem B we can assert our
main result. This gives a complete proof of our Main Theorem.
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